

Счётчик аэроионов «Сапфир-3к»

Государственный реестр № 18295-99

Руководство по эксплуатации

Бд2.899.000 РЭ

СОДЕРЖАНИЕ

1. ОПИСАНИЕ И РАБОТА СЧЁТЧИКА ИОНОВ	
1.1. НАЗНАЧЕНИЕ	2
1.2. ТЕХНИЧЕСКИЕ ДАННЫЕ	
1.3. СОСТАВ СЧЕТЧИКА АЭРОИОНОВ	6
1.4. ОБЩЕЕ УСТРОЙСТВО И РАБОТА	
1.4.1. Устройство	<i>(</i>
1.4.2. Принцип действия и работа	7
1.5. УСТРОЙСТВО И РАБОТА СОСТАВНЫХ ЧАСТЕЙ СЧЕТЧИКА	
АЭРОИОНОВ	
1.5.1. Аспирационная камера	
1.5.2. Плата усилителей (ПУ)	
1.5.3. Плата индикации (ПИ)	9
1.5.4. Плата формирователя команд (ПФ)	
1.5.5. Плата высоковольтного источника (ПВ)	د ر
1.5.6. Плата преобразователя (ПП)	
1.6. СРЕДСТВА ИЗМЕРЕНИЯ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ .	
1.7. МАРКИРОВКА И ПЛОМБИРОВАНИЕ	
1.8. УПАКОВКА	
2. ОБЩИЕ УКАЗАНИЯ ПО ВВОДУ В ЭКСПЛУАТАЦИЮ	
2.1. ПОРЯДОК УСТАНОВКИ	
2.2. ПОДГОТОВКА К РАБОТЕ	11
3. МЕРЫ БЕЗОПАСНОСТИ	13
4. ПОРЯДОК РАБОТЫ	13
4.1. РАСПОЛОЖЕНИЕ ОРГАНОВ УПРАВЛЕНИЯ, НАСТРОЙКИ И	
ПОДКЛЮЧЕНИЯ	13
4.2. ПОДГОТОВКА К ПРОВЕДЕНИЮ ИЗМЕРЕНИЯ	
4.3. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ	
5. МЕТОДИКА ПОВЕРКИ	14
5.1. ОБЩИЕ СВЕДЕНИЯ	
5.1. ОБЩИЕ СВЕДЕНИЯ 5.2. ОПЕРАЦИИ И СРЕЛСТВА ПОВЕРКИ	14
5.2. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ 5.3. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ	16
5.4. ПРОВЕДЕНИЕ ПОВЕРКИ	16
5.5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ	20
6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО)	2 1
6.1. ОБЩИЕ УКАЗАНИЯ	
6.2. ПОРЯДОК ТО	21
6.3. ПРОВЕРКА РАБОТОСПОСОБНОСТИ	

6.4. КОНСЕРВАЦИЯ	21
7. КОНСТРУКЦИЯ	22
КОНСТРУКЦИЯ	,
9. ХРАНЕНИЕ	23
10. ТРАНСПОРТИРОВАНИЕ	23
11. УТИЛИЗАЦИЯ	23
Приложение 1	24
Приложение 2	25
ПРИЛОЖЕНИЕ 3	26
ПРИЛОЖЕНИЕ 4	27
ПРИЛОЖЕНИЕ 5	28
Лист регистрации изменений	29

Настоящее Руководство по эксплуатации (РЭ) является основным документом, предназначенным для изучения устройства счётчика аэроионов «Сапфир-3к» и правил его эксплуатации. РЭ содержит необходимые сведения о технических данных, составе, принципе действия счетчика ионов и его составных частей, указания по технике безопасности, по подготовке прибора к работе и порядке работы с ним, а также возможные неисправности и методы их устранения.

Руководство по эксплуатации рассчитано на обслуживающий персонал, знакомый с основами радиоизмерений, импульсной техники и интегральной электроники.

В руководстве по эксплуатации используются следующие обозначения и названия составных частей счетчика аэроионов:

АК - аспирационная камера;

 E_{κ} - источник питания камеры;

k - подвижность аэроионов $(\frac{cM^2}{B \cdot c})$;

ПВ - плата высоковольтного источника;

ПИ - плата индикации;

ПП - плата преобразователя;

ПУ - плата усилителей;

ПС - плата стабилизаторов;

ПФ - плата формирователя команд;

Тр - входной трансформатор;

 $T_{\scriptscriptstyle H}$ - интервал времени накопления заряда на собирающем электроде аспирационной камеры (c).

1. ОПИСАНИЕ И РАБОТА СЧЁТЧИКА ИОНОВ

1.1. НАЗНАЧЕНИЕ

Счётчик аэроионов предназначен для раздельного и одновременного измерения концентрации положительных и отрицательных аэроионов, содержащихся в $1\,$ см $^3\,$ исследуемого воздуха, со значением подвижности:

$$k \ge 0.4 \frac{c M^2}{B \cdot c}$$
.

Условия эксплуатации:

- рабочая температура (22 ± 5) ^OC;
- относительная влажность (30÷80) %;
- атмосферное давление (760 \pm 30) мм рт.ст.

1.2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Счётчик аэроионов обеспечивает одновременное измерение концентрации положительных и отрицательных аэроионов с подвижностью

$$k \ge 0.4 \frac{c M^2}{B \cdot c}$$
.

- 2.2. Измерение концентрации аэроионов отвечает следующим требованиям:
 - а) собственный фон измерения положительных ионов не превышает 30 см⁻³;
 - б) собственный фон измерения отрицательных ионов не превышает 30 см⁻³;
 - в) диапазон измерений от $2 \cdot 10^2$ до $2 \cdot 10^5$ см⁻³;
- г) количество поддиапазонов измерения концентрации аэроионов обоих знаков три:
 - от $2 \cdot 10^2$ до $2 \cdot 10^3$ см⁻³ І-й диапазон,
 - от $2 \cdot 10^3$ до $2 \cdot 10^4$ см⁻³ II-й диапазон,
 - от $2 \cdot 10^4$ до $2 \cdot 10^5$ см⁻³ III-й диапазон.

Выбор диапазона - автоматический;

д) предел допускаемой основной погрешности измерения концентрации аэроионов в относительных единицах не превышает:

$$0,4+0,01\cdot(n_{K}/n_{X}-1),$$

где n_{κ} - конечное значение предела установленного поддиапазона измерения; n_{κ} - показание счетчика.

- 2.3. Объемный расход воздуха через аспирационную камеру при измерении концентрации аэроионов обоих знаков (230 ± 23) л/мин.
 - 2.4. Ёмкость аспирационной камеры $(13 \pm 1) \, \Pi \Phi$.
- 2.5. Индикация результатов измерения концентрации аэроионов цифровая.
- 2.6. Прибор питается от сети переменного тока напряжением (220 \pm 11) В с частотой сети (50 \pm 1) Γ ц.
 - 2.7. Максимальная мощность, потребляемая от сети, 25 ВА.
 - 2.8. Время прогрева счетчика 5 минут.
 - 2.9. Время непрерывной работы счетчика не должно превышать 8 часов.

1.3. СОСТАВ СЧЕТЧИКА АЭРОИОНОВ

Прибор поставляется в комплекте, указанном в таблице 1.1.

Таблица 1.1.

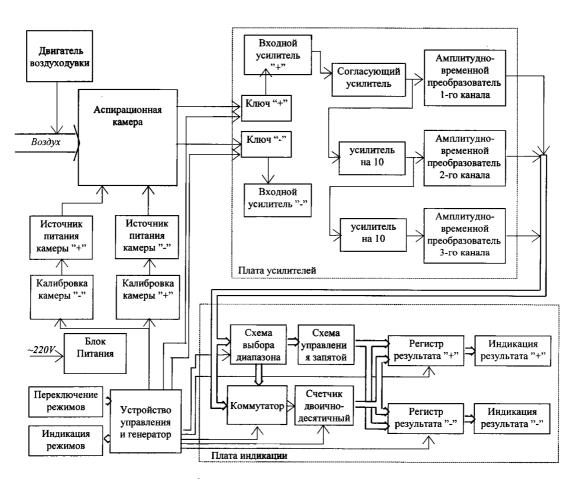
Наименование	Обозначение	Количество	Примечание
Счётчик аэроионов			
«Сапфир - 3к»	Бд.2.899.000	1	
Руководство по			
эксплуатации	Бд.2.899.000 РЭ	1	
Паспорт	Б∂.2.899.000 ПС	1	
Вставка плавкая	ОЮО.480.003 ТУ	2	
ВП-1-0,5А 250В			
Транспортная тара	Бд.2.899.990	1	

1.4. ОБЩЕЕ УСТРОЙСТВО И РАБОТА

1.4.1. Устройство

Счётчик аэроионов представляет собой настольный прибор (см.рис.1) с габаритами:

высота - 120, ширина - 330, глубина - 240. Все органы управления и индикации расположены на передней панели. В левой боковой стенке прибора сделано отверстие для продувки исследуемого воздуха через аспирационную камеру. В нерабочем состоянии прибора входное отверстие закрыто заглушкой.


На задней стенке счетчика расположен предохранитель. В верхней и нижней крышках прибора предусмотрены отверстия для поддержания необходимого теплового режима и обеспечения вентиляции.

1.4.2. Принцип действия и работа

Принцип действия счётчика поясняется структурной схемой (см.рис.2).

Датчиком счётчика аэроионов является аспирационная ионная камера АК. Через аспирационную камеру с помощью двигателя М прокачивается исследуемый воздух. С потоком воздуха в аспирационную камеру поступают ионы. В рабочем объёме камеры на ионы действует электростатическое поле, создаваемое источниками питания камеры E_{κ} "+", E_{κ} "-". Под действием электростатического поля, создаваемого напряжением, ионы отклоняются в сторону собирающего электрода и оседают на нем в течении времени накопления заряда $T_{\rm H}$. По окончанию времени накопления, электрический заряд через ключ разряжается на входное сопротивление усилителя. Усиленный импульс преобразуется в интервал времени и измеряется.

Рис.2

Структурная схема счетчика ионов.

Напряжения питания счетчика обеспечиваются узлами: входным трансформатором Тр, платой преобразователя ПП, платой стабилизаторов ПС. Для создания напряжений питания высоковольтных электродов камеры АК предназначена плата высоковольтного источника ПВ. ПВ также предназначена для коммутации сигналов с задатчика режимов, расположенного на плате формирователя команд ПФ.

Счетчик имеет режимы:

- "КАЛИБРОВКА"
- "ПРОВЕРКА 0"
- "РАБОТА".

Первые два режима предназначены для проверки сопротивления изоляции АК и правильности функционирования измерительного тракта счётчика аэроионов.

Каждый режим задается нажатием кнопки на лицевой панели и индуцируется соответствующим светодиодом. В режиме "КАЛИБРОВКА" счетчика (с двигателя снято напряжение: забор воздуха не происходит) калибровочные напряжения поступают на высоковольтные электроды камеры АК. По окончании времени накопления $T_{\rm H}$ "+" и $T_{\rm H}$ "-" с камеры АК снимаются сигналы калиброванной амплитуды, которые проходят весь тракт измерения и на индикаторном табло высвечиваются цифры, соответствующие калибруемому значению.

В режиме "ПРОВЕРКА 0" на высоковольтные электроды подаются напряжения с высоковольтного источника E_{κ} "+" и E_{κ} "-", забор воздуха не происходит. Сигналы на выходах АК по окончании T_{μ} "+" и T_{μ} "-" отсутствуют и на индикаторном табло должны высветиться нули.

В режиме РАБОТА , включается двигатель М: происходит забор воздуха и измерение концентрации положительных и отрицательных аэроионов в исследуемом воздухе.

1.5. УСТРОЙСТВО И РАБОТА СОСТАВНЫХ ЧАСТЕЙ СЧЕТЧИКА АЭРОИОНОВ

1.5.1. Аспирационная камера

Аспирационная камера предназначена для получения и преобразования информации о значении концентрации аэроионов в электрический сигнал. Аспирационная камера представляет из себя блок, состоящий из собственно аспирационной ионной камеры, расположенной первой по ходу движения воздуха и являющейся датчиком прибора, и вентилятора, крепящихся друг к другу с помощью четырех винтов. Аспирационная ионная камера состоит из четырех электродов, установленных в корпусе и отделенных от него и друг от друга изоляторами. Первые по ходу движения воздуха электроды -

собирающие, представляют из себя сектора с вертикальными ребрами и предназначены для оседания аэроионов.

Вентилятор предназначен для засасывания исследуемого воздуха в пространство между собирающими и высоковольтными электродами и состоит из цилиндрического корпуса, внутри которого расположен двигатель типа ДПР-32-H1-08 с насаженной на его ось крыльчаткой. Рабочий объем камеры предохранен. В нерабочем положении прибора на фланец надевается заглушка, закрывающая входное отверстие камеры.

На ёмкости, образованной собирающим электродом и другими элементами камеры, накапливается заряд, пропорциональный концентрации соответствующей Накопление аэроионов полярности. заряда, пропорционального концентрации аэроионов В исследуемом воздухе, происходит в режиме РАБОТА. Накопленные на собирающих электродах заряды по окончании времени накопления $T_{\rm H}$ "+" и $T_{\rm H}$ "-" в момент коммутации специальными реле стекают через входные сопротивления усилителей на общую шину.

1.5.2. Плата усилителей (ПУ)

Плата усилителей предназначена для усиления и преобразования импульсов во временной интервал.

1.5.3. Плата индикации (ПИ)

Индикация "+" и индикация "-" предназначены для измерения длительности временных интервалов и индикации результатов измерения концентрации аэроионов.

1.5.4. Плата формирователя команд (ПФ)

Формирователь команд предназначен для управления и синхронизации работы всех узлов счетчика аэроионов.

1.5.5. Плата высоковольтного источника (ПВ) -

На плате высоковольтного источника ПВИ расположены источники высокого напряжения E_{κ} "-", коммутаторы калибровочных цепей камеры.

1.5.6. Плата преобразователя (ПП)

Преобразователь предназначен для получения необходимых напряжений питания счетчика аэроионов.

1.5.7. Плата стабилизаторов (ПС)

Стабилизаторы предназначены для стабилизации напряжений с платы преобразователя.

1.6. СРЕДСТВА ИЗМЕРЕНИЯ, ИНСТРУМЕНТ И ПРИНАДЛЕЖНОСТИ

В состав ЗИП прибора входит: вставка плавкая ВП-1-0,5A 250 В ОЮО.480.003 ТУ - 2 шт.

1.7. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

- 1.7.1. Маркировка изделия должна производиться в соответствии с требованиями ГОСТ 18620-86.
- 1.7.2. На задней стенке счетчика ионов должна быть прикреплена фирменная табличка по ГОСТ 12971-67, содержащая:
 - наименование и обозначение изделия;
 - наименование организации изготовителя;
 - заводской номер счётчика ионов;
 - обозначение технических условий;
 - год выпуска.

Способ нанесения маркировки - в соответствии с требованиями конструкторской документации.

- 1.7.3. На лицевой панели счетчика ионов должна быть надпись "СЧЁТЧИК АЭРОИОНОВ" в соответствии с требованиями конструкторской документации.
- 1.7.4. Транспортная маркировка по ГОСТ 14102-77. На транспортной таре должны быть написаны манипуляционные знаки и надписи соответствующие обозначениям: «ОСТОРОЖНО, ХРУПКОЕ», «ВЕРХ», «НЕ БРОСАТЬ», «БЕРЕЧЬ ОТ ВЛАГИ».
 - 1.7.5. Пломбирование

Предприятие-изготовитель пломбирует пломбами верхнюю и нижнюю крышки счетчика. пломбы ставятся в чашечки с мастикой, установленные на одном из крепежных винтов сверху и снизу. Пломбы предприятия-изготовителя снятию не подлежат.

1.8. УПАКОВКА

- 1.8.1. Упаковка и консервация должна обеспечивать сохранность счётчика ионов при эксплуатации, транспортировании и хранении счётчика в условиях и сроки, указанные в разделе настоящих технических условий.
- 1.8.2. Консервация счётчика ионов для транспортирования и хранения должна проводиться на предприятии-изготовителе в соответствии с требованиями ГОСТ 9.014-78, вариант защиты В3-1.

- 1.8.3. Упаковка счётчика ионов должна соответствовать ГОСТ Р50444. Для транспортирования изделия должна применяться коробка из гофрированного картона ГОСТ 7933-89.
- 1.8.4. Эксплуатационная документация должна быть упакована в пакеты из полиэтиленовой пленки по ГОСТ 10354-82 толщиной не менее 0,15 и уложена в упаковочную коробку. ЗИП заворачивается в бумагу по ГОСТ 8828-89.
 - 1.8.5. В коробку должен быть вложен упаковочный лист по ГОСТ Р50444.

2. ОБЩИЕ УКАЗАНИЯ ПО ВВОДУ В ЭКСПЛУАТАЦИЮ

2.1. ПОРЯДОК УСТАНОВКИ

2.1.1. Счетчик аэроионов должен эксплуатироваться в отапливаемом помещении в нормальных условиях эксплуатации:

температура воздуха (22 ± 5) ^OC; относительная влажность $(30 \div 80)$ %; атмосферное давление (730 ± 30) мм рт. ст.

- 2.1.2. В помещении должна поддерживаться чистота, не допускается скопление пыли.
- 2.1.3. Расположить счетчик аэроионов на рабочем месте так, чтобы внешние потоки воздуха были **перпендикулярны** продольной оси аспирационной камеры.
- 2.1.4. Проверить возможность свободного доступа воздуха во входное отверстие счетчика аэроионов. Не допускается загораживать его посторонними предметами.
- 2.1.5. Проверить отсутствие посторонних предметов на верхней крышке счетчика. Вентиляционные отверстия на ней должны быть свободны для доступа воздуха.

2.2. ПОДГОТОВКА К РАБОТЕ

- 2.2.1. Основным условием, обеспечивающим надежную работу счетчика, является строгое соблюдение порядка и правил работ, определенных данным руководством по эксплуатации.
 - 2.2.2. Проверить комплектность счетчика по паспорту Бд2.899.000 ПС.
- 2.2.3. Работать разрешается только с исправным прибором, прошедшим своевременную поверку, что должно быть подтверждено записью в паспорте $\mathcal{B}\partial 2.899.000\ \Pi C$.
 - 2.2.4. Произвести внешний осмотр.

При внешнем осмотре счетчика аэроионов проверить отсутствие внешних дефектов и повреждений, а также целостность органов управления. Последнее проверяется путем двух- трехразового переключения тумблера. Переключение должно быть четкое и сопровождаться щелчком. Проверить наличие заглушки на входном отверстии счетчика.

- 2.2.5. При большой разности температур в складском и рабочем помещениях прибор необходимо выдержать не менее трех часов в нормальных условиях.
- 2.2.6. Убедитесь в наличии соответствующего предохранителя на задней стенке прибора.
 - 2.2.7. Подключите кабель сетевого питания к источнику напряжения.
- 2.2.8. Установите тумблер в положение ВКЛ. При включении должны загореться:
 - шесть цифровых ламп индикаторного табло,
 - лампочка над кнопкой.

Прогрейте счетчик в течение 5 минут.

- 2.2.9. Проверьте работоспособность счетчика. Проверка работоспособности счетчика производится в режимах КАЛИБРОВКА и ПРОВЕРКА "0".
- 2.2.10. Проверьте калибровку счетчика путем нажатия кнопки и убедитесь в появлении на индикаторном табло значений, указанных в паспорте счетчика, в течение времени не более 5 минут после нажатия кнопки.
- П р и м е ч а н и е. При включении счетчика устанавливается режим КАЛИБРОВКА: при загорании светодиода КАЛИБРОВКА, на индикаторном табло устанавливаются значения калибровки, поэтому повторное нажатие кнопки можно не производить.
- 2.2.11. Нажмите кнопку ПРОВЕРКА "0" и после загорания светодиода над этой кнопкой, проверьте установившиеся значения на индикаторном табло (за время не более 5 минут):
 - показания индикаторного табло должны быть не более: -0.03; +0.03.

ВНИМАНИЕ!

- 1. ЗАПРЕЩАЕТСЯ ВКЛЮЧАТЬ РЕЖИМЫ "КАЛИБРОВКА" и "ПРОВЕРКА 0" более чем на 20 мин.
- 2. ЗАПРЕЩАЕТСЯ ЗАКРЫВАТЬ ВЕНТИЛЯЦИОННЫЕ ОТВЕРСТИЯ В КРЫШКЕ И ПАНЕЛИ ДНА.
- 2.2.12. Отключите счетчик аэроионов установкой тумблера ВКЛ в нижнее положение.
- 2.2.13. Настройка и регулирование счетчика аэроионов производятся только представителями предприятия-изготовителя.

3. МЕРЫ БЕЗОПАСНОСТИ

- 3.1. К работе с прибором допускаются лица, изучившие Техническое описание и инструкцию по эксплуатации.
- 3.2. Опасными эксплуатационными факторами при работе со счетчиком являются:
 - питание прибора от сети переменного тока напряжением 220 В;
 - наличие высокого напряжения 160 В на аспирационной камере.
- В связи с этим при эксплуатации счетчика аэроионов необходимо соблюдать следующие предосторожности:
- корпус прибора должен быть надежно заземлен. Для этого необходимо включение прибора только в розетку имеющую контакт заземления (европейская вилка);
- замена предохранителей производится только при выключенном питании: необходимо вынуть вилку шнура питания из сетевой розетки;
 - не допускается использовать нестандартные предохранители.

ЗАПРЕЩАЕТСЯ снимать верхнюю и нижнюю крышки прибора при включенном питании.

Ремонт прибора должен производиться только лицами, знающими схему счетчика аэроионов, принцип его работы, конструкцию прибора.

4. ПОРЯДОК РАБОТЫ

4.1. РАСПОЛОЖЕНИЕ ОРГАНОВ УПРАВЛЕНИЯ, НАСТРОЙКИ И ПОДКЛЮЧЕНИЯ

На задней стенке счетчика расположено гнездо для предохранителя, и выведен кабель сетевого питания.

На передней панели счетчика имеются:

- тумблер питания (с указанием положения «СЕТЬ»);
- кнопки для установления режима работы счетчика («КАЛИБРОВКА», «ПРОВЕРКА 0», «РАБОТА»). Над кнопками находятся светодиоды, указывающие режим работы. В верхней левой части передней панели расположено индикаторное табло. Посередине табло, между цифрами показаний отрицательной и положительной концентрации ионов, находится сигнальный элемент (выполненный в виде сегмента индикатора), который горит в течении времени накопления заряда на АК. В момент погасания элемента происходит измерение заряда с АК

4.2. ПОДГОТОВКА К ПРОВЕДЕНИЮ ИЗМЕРЕНИЯ

- 4.2.1. Снимите заглушку с входного отверстия счетчика аэроионов.
- 4.2.2. Включите счетчик установкой тумблера в положение ВКЛ. Прогрейте счетчик в течение 5 минут.
 - 4.2.3. Проверьте работоспособность счетчика по п.п.2.2.10, 2.2.11.

4.3. ПРОВЕДЕНИЕ ИЗМЕРЕНИЯ

- 4.3.1. Нажмите кнопку РАБОТА. Проверьте загорание светодиода над этой кнопкой и включение двигателя визуально по вращению крыльчатки или по шуму, создаваемому им. Выдержите счетчик в этом состоянии до появления устойчивых показаний (до 4-5 минут).
- 4.3.2. Для проведении одного измерения снимите 10-20 показания с индикаторного табло. В момент погасания сигнального элемента происходит измерение заряда с АК (при нестабильных значениях концентрации ионов происходит смена показаний). Показания на индикаторном табло сохраняются до следующего измерения. Затем отбросив крайние минимальное и максимальное значения найдите среднее арифметическое. Полученное значение является результатом измерения.

Таким образом проведите необходимое количество измерений.

Допускается переносить счетчик с места на место во включенном состоянии при условии исключения попадании пыли в АК.

- 4.3.3. Выключите счетчик установкой тумблера в нижнее положение.
- 4.3.4. Закройте заглушкой входное отверстие счетчика.

5. МЕТОДИКА ПОВЕРКИ

5.1. ОБЩИЕ СВЕДЕНИЯ

Настоящий раздел устанавливает методы и средства первичной и периодической поверок счетчика аэроионов «Сапфир-3к», находящегося в эксплуатации, на хранении и выпуска из ремонта.

Поверку счётчика аэроионов проводят организации, аккредитованные на право поверки средств измерения концентрации аэроионов. Межповерочный интервал составляет 1 год при эксплуатации и 2 года при хранении.

5.2. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

5.2.1. Операции поверки

При проведении поверки должны быть выполнены следующие операции:

- внешний осмотр (5.4.1)
- опробование (5.4.2)
- определение объемного расхода воздуха (5.4.3)
- проверка уровня собственного фона (5.4.4)
- проверка системы калибровки (5.4.5)
- определение чувствительности счетчика (5.4.6)
- обработка результатов измерений и определение основной погрешности (5.4.7.).

5.2.2. Средства поверки

При проведении поверки должны быть применены следующие средства и вспомогательные устройства, приведённые в таблице 5.1.

Таблица 5.1.

Наименование средств поверки	Требуемые те характеристи повер Пределы	ки средств	Рекомендуемое средство поверки (тип)	Номер пункта раздела
	измерения	ность, %	(11111)	поверки
Основные средства				1
Образцовый генератор легких ионов	Концентрация легких ионов от 1·10²до 4·10⁵ см⁻³, при регулировании показателя униполярности от -1 до +1	воспризведения концентрации легких ионов не более СКО- 4%, НСП-3%	Рабочий эталон единицы концентрации легких ионов ВНИИФТРИ	5.4.7
Измеритель объёмного расхода воздуха	200-300, л/мин	3,0	Ротаметр 2,5-го класса точности, типа РМ-6,3 ГУЗ по ГОСТ 13045-81	5.4.3
Преобразователь расхода воздуха	линейной скорости воздуха от 0,5 до 1,5 м/с	Чувствите льность не менее 20 делений на 1 м/с	Анемометрический преобразователь расхода воздуха по ГОСТ 18083 - 72 типа ЭА-2м или АСО-3	5.4.3
Вольтметр универсальный	0,01-200,0	0,5	Вольтфарадоомметр типа Р-385, класс	5.4.6

цифровой		точности 0,06/0,02 по ГОСТ 13600-68	
Вспомогательные сре	едства поверки		
Переходник от		В соответствии	
генератора легких		с Б∂ 2.899.870	5.4.7
ионов к счетчику			
Плата калибровки		В соответствии с	5.4.6
		Бд 2.899.850	
Переходник в			
котором		В соответствии с	5.4.3
устанавливают		Б∂ 2.899.860	
датчик преобразова-			
теля расхода воз-			
духа и который			
помещают на вход			
счетчика ионов			

Допускается применять другие средства, имеющие характеристики, аналогичные указанным.

5.3. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

- 5.3.1. При проведении поверки счетчиков аэроионов должны быть соблюдены следующие условия:
 - температура (22± 5) °С;
 - относительная влажность (30-80) %
 - атмосферное давление (760±30) мм рт. ст.
 - напряжение питания (220 ± 11) В с частотой (50 ± 1) Гц.

Для счетчиков аэроионов должны быть соблюдены условия, соответствующие требованиям их технической документации.

- 5.3.2. Все средства, применяемые при поверке, в том числе и поверяемый счетчик аэроионов, должны быть подготовлены и укомплектованы в соответствии с их технической документацией.
- 5.3.3. Перед проведением поверки счётчик должен быть выдержан не менее 4 часов при температуре от 17 до $25~^{\circ}\mathrm{C}$.
- 5.3.4. Перед проведением операций поверки необходимо выполнить подготовительные работы, оговоренные в разделе 2.2 РЭ «Подготовка к работе».

5.4. ПРОВЕДЕНИЕ ПОВЕРКИ

5.4.1. При внешнем осмотре должно быть установлено:

-отсутствие механических повреждений на счётчике ионов и их герметизирующих заглушках;

-комплектность в соответствии с технической документацией.

- 5.4.2. При опробовании проверяют работоспособность счетчика в соответствии с п.п. 4.2, 4.3 РЭ.
- 5.4.3. Определение объемного расхода воздуха через аспирационную камеру счетчика.

На вход счетчика ионов устанавливают переходник, в котором помещают датчик термоанемометра, по которому получают при включенной воздуходувке счетчика не менее пяти наблюдений - Ni. Определяют среднее значение

$$\overline{N} = \frac{1}{n} \sum_{i=1}^{n} N_i \tag{1}$$

Оценку среднеквадратического отклонения (СКО)

$$S = \sqrt{\frac{\sum_{i=1}^{n} (N_i - \overline{N})^2}{n(n-1)}}$$
 (2)

и оценку отклонения показаний термоанемометра от среднего при доверительной вероятности 0,95

$$\Delta = tS \tag{3}$$

где t - коэффициент Стьюдента, значения которого при доверительной вероятности 0,95 выбирают из таблицы 5.2. в зависимости от числа наблюдений - n.

Таблица 5.2.

n-1	4	5	6	7	8	9	10
t	2,78	2,57	2,45	2,36	2,31	2,26	2,23

На выход блока подачи и измерения расхода воздуха генератора лёгких ионов подсоединяют с помощью переходника Б ∂ 2.899.870 вход переходника Б ∂ 2.899.860, который установлен на вход счётчика ионов. Включают блок подачи генератора и воздуходувку счётчика ионов. Регулированием расхода воздуха устанавливают показание термоанемометра, равное полученному среднему значению N, и по ротаметру получают не менее пяти наблюдений объемного расхода W_i , л/мин. Определяют среднее значение объемного расхода - W, оценки СКО – S_w и оценки отклонения от среднего при доверительной вероятности 0.95 - tS_w по формулам (1), (2) и (3), где вместо показаний анемометра подставляют значения показаний ротаметра. Полученное значение объемного расхода W_i , л/мин заносится в свидетельство о поверке в следующей форме

$$W = \overline{W} \pm (\Delta_W + \frac{\Delta}{\overline{N}} \overline{W}),$$

где $\Delta_{\scriptscriptstyle W}$ - погрешность измерения объемного расхода ротаметром, которую вычисляют по формуле

$$\Delta_W = \Theta_W + tS_W,$$

где $\Theta_{\scriptscriptstyle W}$ - систематическая погрешность, равная основной погрешности измерения ротаметра.

Вычисляют отклонение объёмного расхода воздуха (\overline{W}) от номинального значения ($W_{\text{\tiny HOM}}$) в относительных единицах по формуле:

$$\Theta'_{\scriptscriptstyle HOM} = rac{\overline{W} - W_{\scriptscriptstyle HOM}}{W_{\scriptscriptstyle HOM}}$$
 .

Это отклонение не должно превышать \pm 0,10.

5.4.4. Определение уровня собственного фона

Включают счетчик, устанавливают заглушку на его входное отверстие и после прогрева в течение 10 минут снимают с табло положительного и отрицательного канала счётчика не менее 5 наблюдений с интервалами времени между наблюдениями не менее 4 с. Вычисляют среднее значение фона ρ_{Φ} , оценку СКО - S и отклонение собственного фона от среднего значения при доверительной вероятности 0,95 соответственно по формулам (1), (2) и (3), в которых вместо значений N_i подставляем $\rho_{\Phi,i}$.

Полученное значение собственного фона - ρ_{Φ} , cm^{-3} заносится в протокол поверки в следующей форме:

$$\rho_{\Phi} = \overline{\rho}_{\Phi} \pm \Delta \rho_{\Phi}$$
.

Полученные значения $\rho_{\Phi} + \Delta \rho_{\Phi} \ u \ \Delta \rho_{\Phi}$ не должны превышать значений, указанных в паспорте счетчика. Если эти условия не выполняются, то прибор бракуется.

Аналогичные операции проводят для определения собственного фона ионов другой полярности.

5.4.5. Проверка системы калибровки счетчика

Включают кнопку «Калибровка», снимают не менее 5 показаний счетчика для положительного $\Delta \rho_K$ и для отрицательного каналов - $\Delta \rho_K$. Для каждого из этих каналов определяют по формулам (1), (2) и(3) среднее значение калибровки - $\overline{\rho}_K$, оценку СКО - $S_{\rho,K}$ и отклонение от среднего значения (при Р = 0,95) - по формулам (1), (2) и (3), в которые вместо N_i подставляют значения $\rho_{K,i}$.

Полученные значения $\overline{\rho}_{K}$ и $\Delta \rho_{K}$ положительного и отрицательного каналов заносят в протокол поверки счетчика в следующей форме:

$$\rho_K = \overline{\rho}_K \pm \Delta \rho_K.$$

Значения величин $\overline{\rho}_{\kappa}-\Delta\rho$ и $\overline{\rho}_{\kappa}+\Delta\rho$ не должны выходить за пределы, указанные в паспорте счётчика. Если это не выполняется, то счётчик ионов бракуется.

5.4.6. Определение чувствительности измерительного канала счетчика Подключить плату калибровки Бд2.899.850 и вольтметр. Установить значение U по вольтметру в соответствии с таблицей 5.3. и выждать 7 сек. Снимают не менее пяти показаний счетчика ρ_i , c_M^{-3} . В таблице 5.3. приведены значения показаний счётчика, соответствующие номинальному значению чувствительности измерительного канала.

Таблица 5.3.

ΔU, B	0	0,20	0,50	1	2	5	10	15	28	100	120
ρ_i ,тыс. $c M^{-3}$	0	0,36	0,90	1,80	3,6	9,0	18,0	27	50	180	"П00"

Для каждого значения ΔU , приведенного в таблице 5.3., определяют среднее значение чувствительности - $\overline{\varPi}_{\Delta U}$, $B^{\text{-1}}$ cm⁻³

$$\overline{\Pi} = \frac{\sum_{i=1}^{n} (\rho_{i} - \overline{\rho}_{o})}{n \cdot \Delta U},$$

и относительное отклонение $\Theta'_{\Delta U}$ от номинального значения - $\Pi_{\Delta U, \text{ном}} = 1, 5 \cdot 10^3, B^{-1} \cdot \text{см}^{-3}$, по формуле:

$$\Theta_{\Delta U}' = rac{\overline{\Pi}_{\Delta U} - \Pi_{\Delta U, {\scriptscriptstyle HOM}}}{\Pi_{\Delta U, {\scriptscriptstyle HOM}}}.$$

Рассчитывают величину: $|\Theta'_W + \Theta'_{\Delta U}|$, где Θ'_W - определяют в соответствии с п.5.4.3. Эта величина не должна превышать 0,05. Если это условие не выполняется, то проводят подрегулировку чувствительности измерительного канала, добиваясь, чтобы выполнялось условие:

$$\left|\Theta_W' + \Theta_{\Lambda U}'\right| \le 0.05.$$

5.4.7. Обработка результатов измерений и определение основной погрешности Снимают с входа аспирационного канала счетчика заглушку. Счётчик ионов подсоединяют с помощью переходника к выходу генератора ионов. Устанавливают расход воздуха в аэроионизаторе равным значению расхода воздуха счетчика - \overline{W} , л/мин, определенному в соответствии с п.5.4.3 и необходимое значение концентрации + и - легких ионов. Берут не менее 5 показаний счетчика через интервал времени не менее 4 с. для ионов каждой полярности $\rho_{\rm i}$,см⁻³. Среднее значение концентрации + и - легких ионов определяется по формуле

$$\overline{\rho} = \frac{1}{n} \sum_{i=1}^{n} (\rho_i - \rho_{\Phi}),$$

где п - число наблюдений.

Определяют относительное отклонение результата измерения счетчика ионов концентрации легких ионов - $\overline{\rho}$ от действительного значения - ρ

$$\Theta_{\rho} = \frac{\overline{\rho} - \rho}{\rho} 100\% .$$

Указанные операции проводят не менее чем для 2-х значений концентрации легких ионов в каждом из 3-х поддиапазонов измерений счётчика для положительных и отрицательных лёгких ионов. Значения концентрации ионов каждого поддиапазона устанавливают в интервалах 0.1,..,0.2, 0.4,..,0.6 и 0.8...1.0 доли от его верхней границы.

Определяют максимальное значение величины Θ_{ρ} для всего диапазона измерения счетчика - ξ и заносят его в свидетельство о поверке. Полученное значение ξ_{ρ} - не должно превышать значения, определяемого по формуле

$$\xi \leq \left(0,2 - \left|\frac{\Delta}{\overline{N}}\right|\right) \cdot 100\%$$

где Δ и \overline{N} - определяются в соответствии с п.5.4.3.

При выполнении данного условия и условий, приведенных в пунктах 5.4.2, 5.4.4 и 5.4.5, основная погрешность измерения концентрации лёгких ионов поверяемым счетчиком не должна превышать 40% при доверительной вероятности 0,95.

5.5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

- 5.5.1. На счетчики ионов, признанные годными, выдают свидетельство о поверке, форма которого приведена в обязательных приложениях 1 и 2, с нанесением на счетчик оттиска поверительного клейма.
- 5.5.2. Результаты поверки счетчика ионов заносят в протокол, форма которого приведена в обязательном приложении 3.
- 5.5.3. Счетчики ионов, не соответствующие требованиям настоящей методики, бракуют, к применению не допускают и на них выдают извещение о непригодности. Свидетельство предыдущей поверки аннулируют. Клеймо предыдущей поверки гасят.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ (ТО)

6.1. ОБЩИЕ УКАЗАНИЯ

Техническое обслуживание производится с целью обеспечения нормальной работы счетчика аэроионов в течение его эксплуатации.

Рекомендуемая периодичность и виды профилактических работ:

- визуальный осмотр каждую неделю;
- внешняя чистка каждый месяц.

6.2. ПОРЯДОК ТО

Внешним осмотром проверьте состояние входного отверстия. Не допускается скопление пыли и ворса на сетке. В случае загрязнения сетки входного отверстия прочистить её пылесосом. Перед чисткой отверстия необходимо выключить счетчик тумблером.

6.3. ПРОВЕРКА РАБОТОСПОСОБНОСТИ

6.3.1. Проведите проверку работоспособности счетчика по пунктам 4.2, 4.3.

6.4. КОНСЕРВАЦИЯ

Консервацию прибора производите в следующем порядке:

- протрите прибор и ЗИП от грязи и пыли. Если прибор подвергался воздействию влаги, просушите его в лабораторных условиях в течение 2-х суток;
 - наденьте заглушку на входное отверстие аспирационной камеры;
 - навинтите предохранительные колпачки на разъёмы;
- вилку и разъём кабеля питания заверните в промасленную бумагу и обвяжите ниткой;
 - поместите прибор в упаковочную тару.

На упаковочной таре должна иметься соответствующая надпись для распознавания прибора на складе.

7. КОНСТРУКЦИЯ

7.1. Счётчик ионов представляет собой настольный прибор (см. рис.1) с габаритами: высота - 120, ширина - 330, глубина - 240. Все органы управления и индикации расположены на передней панели. В левой боковой стенке прибора сделано отверстие для продувки исследуемого воздуха через аспирационную камеру. В нерабочем состоянии прибора входное отверстие закрыто заглушкой.

На задней стенке счетчика расположен предохранитель и выведен кабель подключения питания ~220 В.

В верхней и нижней крышках прибора предусмотрены отверстия для поддержания необходимого теплового режима обеспечения естественной вентиляции и отвода воздуха от АК.

Аспирационная камера крепится ко дну прибора и отделена экраном от основного отсека.

На плате ПУ размещены два реле для съёма сигналов с камеры: одно реле - для съёма сигнала о положительных ионах, другое реле, расположенное под ним - для съёма сигнала об отрицательных ионах.

Весь электромонтаж счетчика выполнен на печатных платах за исключением монтажа крупногабаритных элементов и межплатных соединений.

Плата индикации отделена от платы усилителей экраном. За платой усилителей расположены плата формирователя команд, плата стабилизаторов и плата преобразователя.

Ко дну прибора прикреплен трансформатор.

За аспирационной камерой располагается плата высоковольтного источника.

8. УКАЗАНИЯ ПО УСТРАНЕНИЮ НЕИСПРАВНОСТЕЙ. ТЕКУЩИЙ РЕМОНТ

Поиск и устранение неисправностей, связанных с вскрытием прибора, производят на предприятии-изготовителе или представителем предприятия-изготовителя.

В таблице 8.1. приведены неисправности, вероятные причины которых возможно устранить без вскрытия прибора. Если же устранение этих причин не приведет к устранению неисправности, то прибор передается на ремонт установленным порядком.

ВНИМАНИЕ! При устранении неисправности отключите прибор от источника питания.

Таблица 8.1.

Неисправность, внешнее	Вероятная причина	Метод устранения
проявление	неисправности	
1. При включении	Перегорел	Проверьте
прибора ни одна из ламп	предохранитель	предохранитель,
индикаций не загорается	соответствующего	замените
	напряжения	неисправный
	питания	
2. При проверке счетчика	Засорение	Прочистите
в режимах КАЛИБРОВКА	аспирационной	аспирационную
и ПРОВЕРКА "0"	камеры	камеру пылесосом
показания на		
индикаторном табло не		
соответствуют		
паспортным данным		

9. ХРАНЕНИЕ

9.1. Счетчик должен храниться в отапливаемом помещении при температуре воздуха от +5°C до +35°C и относительной влажности воздуха 30-80% с кратковременными выпадами до 98%.

Срок хранения прибора не должен превышать 5 лет.

Если предполагается, что прибор долгое время не будет находиться в эксплуатации, требуется обязательная его консервация (см. п.6.4).

10. ТРАНСПОРТИРОВАНИЕ

Транспортирование счётчиков ионов «Сапфир-3к» производить только в упаковке завода-изготовителя в закрытых транспортных средствах на любые расстояния при соблюдении правил перевозки грузов, действующих на транспорте соответствующего вида.

11. УТИЛИЗАЦИЯ

Непригодный к использованию счётчик аэроионов передаётся на утилизацию предприятию-изготовителю.

Обязательное

ФОРМА СВИДЕТЕЛЬСТВА

СВИДЕТЕЛЬСТВО N_____ о поверке

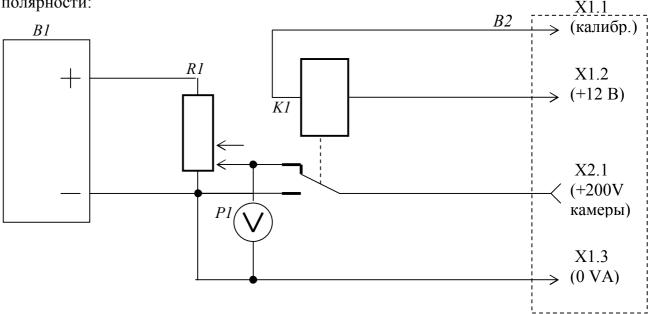
о поверке	
N	
(наименование СИ)	
с пределами измерений	_
принадлежащего	
на основании результатов поверки ПРИЗНАН ГОДНЫМ и ДОПУЩЕН	К
применению в качестве рабочего средства измерений сроком до 199г.	
М.П.	
Начальник лаборатории государственного метрологического центра	
Специалист, проводивший поверку	
« » 199 г.	

Обязательное

ОБОРОТНАЯ СТОРОНА СВИДЕТЕЛЬСТВА

Результаты государственной поверки

1.	Номер и год выпуска СИ	
2.	Объемный расход	
3.	Уровень собственного фона	
4.	Калибровка	
5.	Чувствительность измерительного канала	
6.	Нелинейность	
7.	Основная погрешность	
	Породугату	
	Поверитель(подпис	<u></u>


Обязательное

ФОРМА ПРОТОКОЛА ПОВЕРКИ

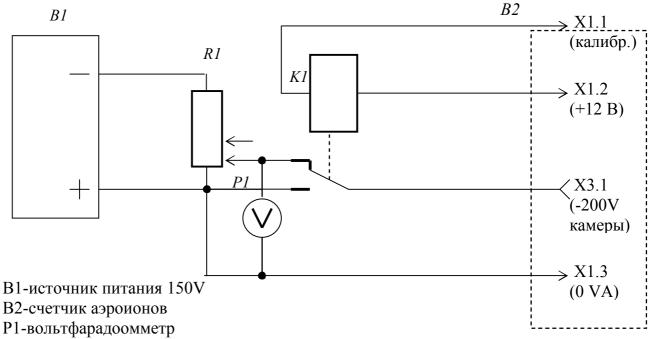
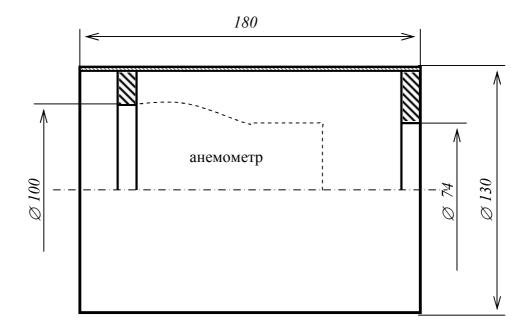

Протоко	ол N		«»		1998
поверки	, при	инадлежа	щего		
1. Номер счетчика_					пуска
2. Дата поверки					
3. Условия поверки					
4. Проверка комплектности и внешнего	осмотр	a			
5. Характеристики образцовых средств в	измерен	ий			
6. Данные поверки					
Заключение по ре	езультат	гам повер	жи		
(наименование прибора) (соответствует, не соответствует).		требова	ниям на	стоящеі	й методи
Выдано свидетельство N о Выдано извещение о непригодности N	от «		»	199	_г. 199г
Поверку проводил (подпись)					

СХЕМА ПОДКЛЮЧЕНИЯ ПЛАТЫ КАЛИБРОВКИ Б∂2.899.850 И ВОЛЬТМЕТРА.

а) при определении чувствительности канала измерения положительной полярности: X1 1



б) при определении чувствительности канала измерения отрицательной полярности:

К1-реле РЭС-59 ГОСТ16121-86 и ХП 0.450.002ТУ, исполнение ХП4.500.020-01 R1-сопротивление переменное СП5-40A 5вт 68ком $\pm 10\%$ ОЖО.360.568

ПЕРЕХОДНИК ОТ АНЕМОМЕТРА К СЧЕТЧИКУ, Б∂2.899.860 .ОБЩИЙ ВИД.

Лист регистрации изменений

	Номе	ера лист	ов (стра	ниц)	Всего		Входя щий N		
Изм.	Измен енных	Замене	Новых	Анну лирова нных	листов (стра ниц) в доку менте	N доку мента	сопро	Под- пись	Дата
]								